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Abstract. An eight-component relativistic wave equation for spin-1
2 particles is derived. It is

obtained from a spin-12 wave equation, which contains second-order derivatives in both space and
time, by a procedure involving the linearization of the time derivative. It is in Hamiltonian form
and is analogous to the two-component spin-0 equation, which features the use of an indefinite
inner product in the description of the solution space. It is used to produce the relativistic
bound-state energy eigenvalue spectrum and wavefunctions for the hydrogen atom.

1. Introduction

The discovery of electron spin in 1925 by Uhlenbeck and Goudsmit [1] led to attempts to
describe it quantum mechanically. In 1927, Pauli [2] described the electron in terms of a
two-component wavefunction satisfying a Schrödinger-type equation involving the 2× 2
Pauli spin matrices. This theory is non-relativistic and, as Pauli emphasized, is therefore
only approximate: one required an equation compatible with the special theory of relativity.

The first relativistic wave equation, written down by several people in 1926 [3], is the
so-called Klein–Gordon equation (in the following we assumec = 1 = h̄)(

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
+ m2

)
9 = (∂µ∂µ + m2)9 = 0. (1)

The extension of equation (1) to the case of a classical external electromagnetic field is

(DµDµ + m2)9 = 0 (2)

with Dµ the minimally coupled derivative [4].
This equation suffers from two basic flaws as far as the electron is concerned. First, it

does not describe the spin of the electron, nor its magnetic moment. Secondly, it does not
describe the bound-state energy levels of the hydrogen atom, as given by the Sommerfeld
fine-structure formula, although it does give the Balmer formula. Also, at the time, there
was no physical explanation for the non-positive definite nature of the density associated
with the Klein–Gordon equation

ρ = j0 = i

m

(
9∗ ∂9

∂t
− ∂9∗

∂t
9

)
− 2eA0

m
9∗9 (3)
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which thus cannot be interpreted as a probability density as in the non-relativistic case.
In 1928 Dirac [5] published his relativistic equation for the electron. He introduced

4 × 4 matricesγ µ, where

{γ µ, γ ν} = 2gµν (4)

to factorize the Klein–Gordon equation and obtained the Dirac equation

(iγ µDµ − m)9D = 0 (5)

linear in ∂
∂t

, which Dirac believed at the time was required to obtain a positive definite

j0. The wavefunction9D has four components and the densityj0 = 9
†
D9D is positive

definite and so can be interpreted as a probability density. In addition the Dirac equation
describes particles with spin-1

2 and also the (almost) correct magnetic momente/(2m). The
Sommerfeld fine-structure formula is also obtained for the bound-state energy levels of the
hydrogen atom. Thus the Dirac equation was spectacularly successful in producing results
in agreement with experiment at the time. However, there was one serious problem: the
equation has negative energy solutions, which cannot easily be rejected. Indeed, Klein and
Nishina [6] described Compton scattering in terms of the Dirac equation and their theory
required the inclusion of the negative energy states in order to give the Thomson classical
limit at low energies [7].

Initially it was suggested that the negative energy states were protons, but Dirac pointed
out that protons had the wrong sign of charge. He then suggested that all the negative
energy states are normally occupied and that ‘holes’ in this infinite sea of electrons act like
a particle with positive energy and positive charge. Later he identified the holes with a new
particle, which he termed the anti-electron. In 1932 Anderson [8] discovered the positron
with a mass equal to that of the electron. This discovery was accepted by most people as
a vindication of Dirac’s theory. Yet, the idea of a positron being a hole in an infinite sea
of negative electrons was considered to be unsatisfactory to some, since it led to problems
with infinities: the vacuum had a negative infinite zero point energy and an infinite zero
point charge. Moreover, the scattering of a photon by an electron had become a many-body
problem rather than a simple two-body problem.

The problem of the negative energy states was eventually overcome by the use of second
quantization and quantum field theory, although this involved the use of a renormalization
technique which is plagued by infinities. However, the resultant theory of quantum
electrodynamics has been remarkably successful in making predictions in agreement with
experiments, which later showed small discrepancies (e.g. the Lamb shift) with the Dirac
theory.

However, the Dirac equation, as a relativistic wave equation, is often used in both
atomic and nuclear physics, for cases where the external field is such that relativistic
quantum mechanics is a useful approximation to quantum field theory. Here, the equation
has the difficulty that certain predictions are not in agreement with nature. To be specific,
the probability density is not a charge density and does not reflect the charge degree of
freedom. Furthermore, the expectation value of the Hamiltonian in the case of no external
field is not positive definite. In nature one sees the charge degree of freedom and only
positive energies.

The purpose of the present paper is to show that there is another relativistic equation
which also describes particles with spin-1

2. Moreover, this equation has an associated charge
density which describes both positive and negative charged particles in a symmetrical way.
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As well as the usual positive and negative energy electron solutions, the equation also has
positive and negative energy positron solutions. Thus, the equation has solutions which
match the physical description of positrons, i.e. having positive charge and positive energy.
The equation is analogous to a two-component equation for spin-0 particles, obtained from
the Klein–Gordon equation by linearizing the time derivative. The two-component spin-0
equation is discussed in section 2. The spin-1

2 analogue to it, which is the eight-component
equation we wish to derive, is constructed in section 3. In section 4 the new equation is
solved exactly to produce the bound-state energy eigenvalue spectra and wavefunctions for
hydrogenic atoms. The method of solution is presented in detail so that it can be compared
with the solution using the Dirac equation.

2. Hamiltonian form of the Klein–Gordon equation

The Klein–Gordon equation (1) contains second-order derivatives in both space and time.
In order to obtain an equation in Hamiltonian form, it is necessary to linearize the time
derivative. This can be done [9] by writing the Klein–Gordon wavefunction9KG in a
two-component form:

9 =
(

φ

χ

)
= 1√

2

(
9KG + m−1iD09KG

9KG − m−1iD09KG

)
(6)

so that

i
∂9

∂t
= H9 (7)

with

H = − 1

2m
D2

(
1 1

−1 −1

)
+ m

(
1 0
0 −1

)
+ eA012 (8)

whereD andD0 are the minimally coupled three-dimensional space and time derivatives
respectively, and12 is the 2×2 unit matrix. We call equation (7) the two-component spin-0
equation [9] and denote the corresponding wavefunction by9. Feshbach and Villars [9]
show that the writing of the Klein–Gordon equation in this (Hamiltonian) form opens the
possibility of developing a quantum mechanical formalism for the equation, providing an
indefinite inner product is used. The density (3) becomes

j0 = φ∗φ − χ∗χ = 9†
(

1 0
0 −1

)
9 (9)

which is not positive definite but can readily be interpreted as a charge density. Moreover,
the indefinite inner product provides an interpretation in which only positive physical
energies are obtained.
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3. Derivation of the eight-component equation

In section 2 the two-component spin-0 equation is given by equation (7) with the
Hamiltonian defined by equation (8). It is obtained from the Klein–Gordon equation by
linearizing the time derivative.

An analogous equation for spin-1
2 particles may be constructed by linearizing the time

derivative of a corresponding second-order equation which includes the appropriate spin
terms. Such a second-order equation, which is manifestly covariant, is

((γ µDµ)2 + m214)9 = 0 (10)

where theγ µ are the usual Dirac matrices, and the wavefunction9 has four components.
Equation (10), also known as the Feynman–Gell-Mann equation [10], may be written in the
form (

(DuDµ + m2)14 + e

2
σµνFµν

)
9 = 0 (11)

where σµν = (i/2)[γ µ, γ ν ] and Fµν = ∂µAν − ∂νAµ. The final term contains the spin
interaction in the presence of a classical external electromagnetic field. This term is absent
for spin-0 particles. For free particles, equation (11) becomes the free particle Klein–Gordon
equation for each component of the wavefunction.

Using the Weyl representation of the gamma matrices:

γ 0 =
(

0 12

12 0

)
γ =

(
0 −σ
σ 0

)
(12)

equation (10) separates into two equations involving two-component wavefunctions9±:

(D2
012 − (σ · D)2 ± [(σ · D), D012] + m212)9± = 0. (13)

Equations (13) can be written

(D2
012 − D212 ± ieσ · (E ± iB) + m212)9± = 0 (14)

whereE andB are the usual electromagnetic field intensities. Linearizing equations (14)
in the time derivative, analogously to equation (6), gives two four-component equations in
Hamiltonian form with Hamiltonians

Hξ =
(

1 1
−1 −1

)
⊗ 1

2m

(−D212 + ieσ · (E + iB)
) + m

(
12 0
0 −12

)
+ eA014 (15)

Hη̇ =
(

1 1
−1 −1

)
⊗ 1

2m

(−D212 − ieσ · (E − iB)
) + m

(
12 0
0 −12

)
+ eA014 (16)

respectively, with⊗ the usual Kronecker (direct) product. The subscriptsξ and η̇ are used
here in place of+ and− respectively. A more formal justification of the above derivation
of equations (15) and (16) in terms of irreducible spinor representationsεα and ηβ̇ of the
proper Lorentz group is presented in the following paper [11]. The HamiltoniansHξ andHη̇

contain the pseudoscalar termσ ·E and interchange under spatial inversion. In order to have
an equation invariant under spatial inversion, it is necessary to consider an eight-component
wavefunction9 = (9ε, 9η̇)

T , where9ε and9η̇ are four-component wavefunctions which
transform into each other under spatial inversion. Thus one obtains the following equation
for the eight-component wavefunction9:(

(i ∂
∂t

14 − Hξ) 0
0 (i ∂

∂t
14 − Hη̇)

) (
9ε

9η̇

)
= 0. (17)

This eight-component equation is the spin-1
2 analogue to the two-component spin-0 equation.

The conserved current and (indefinite) inner product for equation (17) are discussed in the
following paper [11].



An eight-component relativistic wave equation I 161

4. The hydrogen atom

Historically, the success of the Dirac equation in explaining the spectrum of the hydrogen
atom was important for its acceptance as a relativistic wave equation. Nowadays the Dirac
equation is used widely as a starting equation for more complex atomic calculations.
If the eight-component equation derived in the previous section is a valid relativistic
wave equation, it should also produce the bound-state energy eigenvalue spectrum for the
hydrogen atom. Moreover, it is interesting to compare the solution method, spectrum and
wavefunctions with that of the Dirac equation.

The general procedure used to obtain the hydrogen atom spectrum and wavefunctions
is the following [12, 13]. One starts with the Dirac equation and adds a minimally
coupled Coulomb potential,A0 = −Ze/r, A = 0. The Z in the Coulomb potential
refers to a nucleus of Z protons, so that this solution also applies to hydrogen-like ions.
Spherical polar coordinates are used, and it is possible to separate the radial and angular
equations. The angular dependence is given by linear combinations of spherical harmonics
coupled to two-component spinors while the radial functions are linear combinations of
confluent hypergeometric functions multiplied by a decaying exponential function of the
radial coordinate. The confluent hypergeometric function itself is defined in terms of a
series and satisfies a second-order differential equation. Since the radial equations of the
Dirac are coupled first-order equations, rather than a single second-order equation, it is
not possible to write down the solution as a confluent hypergeometric function just by
inspection. Instead a power series solution ansatz is tried and the series is found to match
that of a certain linear combination of confluent hypergeometric functions.

A similar procedure will be applied to obtain the exact relativistic solution to the
hydrogen atom for the eight-component equation. Not only will the hydrogen atom be
solved, but the solution for spinless atoms will also be obtained, because the Hamiltonians
for spin-1

2 (equations (15) and (16)) and spin-0 (equation (8)) are so similar. Obviously
this is not possible using the Dirac equation. Given that the effects of the spin are only
a relatively small correction to the spectrum, it would seem natural to have a method of
solution where the effects of spin appear in the equation as a small extra term.

It turns out that the energy spectrum can be obtained with the use of only one of the
four-component Hamiltonians (15) or (16). The Hamiltonian (15) is used with a Coulomb
potential. One of equations (14) has been solved already to produce the hydrogen atom
spectrum [14], but it is necessary to use the Hamiltonian (15) (or (16)), to see how the
method of solution compares with the Dirac case. It is convenient to start with (15) with ¯h

andc put in to facilitate the transition to atomic units. The atomic units are those of Bethe
and Salpeter [12]. The equation(i ∂

∂t
14 − Hξ)9ξ = 0 with the HamiltonianHξ given by

(15) becomes, written as two two-component equations in atomic units withα = e2/(h̄c),((
−∇2 + 2

α2
− 2E − 2Z

r

)
12 − iαZ

σ · r̂

r2

)
φ +

(
−∇212 − iαZ

σ · r̂

r2

)
χ = 0 (18)(

∇212 + iαZ
σ · r̂

r2

)
φ +

((
∇2 − 2

α2
− 2E − 2Z

r

)
12 + iαZ

σ · r̂

r2

)
χ = 0. (19)

The Hamiltonian (16) gives the same equations except that the sign of theσ · r̂ term is
changed. The spin-0 Hamiltonian (8) gives similar equations except that theσ · r̂ term is
missing, and the two equations are each for only one component.

∇2 is written in spherical polar coordinates and then the radial and angular variables are
separated by using wavefunctions which are eigenfunctions of the angular operators in the
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equation. The angular part of the∇2 operator has as eigenfunctions the spherical harmonics
Ylm(θ, φ). For spin-12 particles the spherical harmonics must be coupled to two-component
spinors in the standard way to give the spherical spinorsYm

lj (θ, φ) [13, 15]. Theσ · r̂

operator interchanges the spherical spinors withl = j ± 1
2 and l′ = j ∓ 1

2 (page 928 of
[13]). Let � be the angular operatorL212 − iαZσ · r̂. The eigenfunctions of� are

2l,l′,j,m(θ, φ) = Ym
lj + iκYm

l′j (20)

with

Zακ = ± (
(j + 1

2) − ((j + 1
2)2 − (Zα)2)1/2

)
l = j ± 1

2. (21)

The eigenvalues of� are

λ = (j + 1
2)2 ± ((j + 1

2)2 − (Zα)2)1/2 l = j ± 1
2. (22)

For small Z, λ reduces tol(l + 1) + O(Zα) as the spin correction is now small, and
κ ≈ (Zα)/(2j + 1) so that the angular eigenfunctions are approximatelyYm

lj which are the
non-relativistic (Pauli) eigenfunctions with orbital angular momentuml.

Writing the wavefunction as(
φ(r, θ, φ)

χ(r, θ, φ)

)
= 1

r

(
f (r)

g(r)

)
⊗ 2(l,l′,j,m)(θ, φ) (23)

gives the radial equations(
− ∂2

∂r2
+ λ

r2
+ 2

α2
− 2E − 2Z

r

)
f (r) +

(
− ∂2

∂r2
+ λ

r2

)
g(r) = 0 (24)(

∂2

∂r2
− λ

r2

)
f (r) +

(
∂2

∂r2
− λ

r2
− 2E − 2

α2
− 2Z

r

)
g(r) = 0. (25)

In the spin-zero case one obtains the same radial equations except thatλ = l(l + 1). Hence
the radial equations will be solved simultaneously for spin-1

2 and spin-0.
Consider ther → ∞ limit. The potential terms are then negligible and the radial

equations become(
∂2

∂r2
+ 2E − 2

α2

)
f + ∂2

∂r2
g = 0 (26)

∂2

∂r2
f +

(
∂2

∂r2
− 2E − 2

α2

)
g = 0. (27)

This gives the asymptotic form of bothf andg as

ae−|3|r |3| = 1

α

√
1 − (Eα2)2. (28)

Here,a is a constant, different forf and g. This is the same asymptotic form as for the
Dirac equation. The factor e−|3|r is eliminated from equations (24) and (25) by writing

f (r) = e−|3|ry(r) g(r) = e−|3|rz(r). (29)
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Changing variables toρ = 2|λ|r and taking sums and differences of (24) and (25) gives

4|3|2
(

∂2

∂ρ2
− ∂

∂ρ
+ 1

4
− λ

ρ2
− 1

α24|3|2
)

(y(ρ)+z(ρ))+
(

E + 2|3|Z
ρ

)
(y(ρ)−z(ρ)) = 0

(30)(
E + 2|3|Z

ρ

)
(y(ρ) + z(ρ)) − 1

α2
(y(ρ) − z(ρ)) = 0. (31)

To solve (30) and (31) a power series solution is attempted:

y(ρ) = ργ
∞∑

n=0

anρ
n (32)

z(ρ) = ργ
∞∑

n=0

bnρ
n. (33)

If the power series extends to∞ then the wavefunctions will not be normalizable. Both
here and in the Dirac case one postulates that the series must therefore terminate at a certain
value ofn, and the condition that it terminates gives the energy spectrum. By substituting
the power series solution ansatz into (30) and (31) and equating the coefficients of the lowest
powers ofρ, γ is obtained. It is found that

γ (γ + 1) − λ + (Zα)2 = 0 (34)

which gives

γ = − 1
2 + ((j + 1

2)2 − (Zα)2)1/2 ± 1
2 l = j ± 1

2. (35)

For spin-0

γ = − 1
2 + ((l + 1

2)2 − (Zα)2)1/2. (36)

Equation (34) gives two values ofγ for each value ofλ, but, as in the Dirac case, only the
one with the positive sign before the square root is chosen, otherwise for highj or l the
wavefunctions will diverge strongly at the origin. General relations between the coefficients
of the power series solution are, definingcn = an + bn anddn = an − bn,

Ecn + 2|3|Zcn+1 − 1

α2
dn = 0 (37)

((γ + n)(γ + n + 1) − λ)cn+1 − (γ + n)cn + Z

2|3|dn − E2α2

4|3|2 cn−1 + E

4|3|2 dn−1 = 0. (38)

From these equations it is simple to obtain both the energy spectrum and the wavefunctions.
Rewrite (37) and (38) as

2|3|Zcn = −
(

Ecn−1 − 1

α2
dn−1

)
(39)

((γ + n)(γ + n + 1) − λ) cn+1 − (γ + n)cn + Z

2|3|dn − Eα2

4|3|2
(

Ecn−1 − 1

α2
dn−1

)
= 0.

(40)
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Equation (39) is inserted into (40) to eliminate then − 1 terms, and then (37) is used to
eliminate thedn term, leaving an equation forcn+1 andcn only. This is

((γ + n)(γ + n + 1) − λ + (Zα)2)cn+1 +
(

ZEα2

|3| − (γ + n)

)
cn = 0. (41)

The first term can be simplified by using (34)

n(n + 2γ + 1)cn+1 +
(

ZEα2

|3| − n

)
cn = 0. (42)

It was mentioned before that there will be ann = n′ > 1 where the series will terminate,
and thus we setn so that then′ + 1 and higher coefficients are equal to zero. Hence (42)
gives

n′ = ZEα2

|3| − γ. (43)

With the value for|3| inserted one obtains a condition forE in terms ofn′, which is

E = 1

α2

(
1 + (Zα)2

(n′ + γ )2

)−1/2

. (44)

This is the same energy spectrum that the Dirac equation gives. Then′ here begins at 1,
whereas the Diracn′ begins at 0. However, unlike theγ for the Dirac equation, (35) has
two solutionsγ = γ(Dirac) − 1, γ = γ(Dirac). The lowest energy state is forn′ = 1 and here
one will haveγ = γ(Dirac) − 1 because it will be thel = 0 state andl = j − 1

2, which picks
the sign ofλ in (22), and hence the lower value ofγ . So actually the spectrum begins at the
same value and then increases in correspondence with the Dirac spectrum. In both spectra
there is a degeneracy for different values ofn′ andγ , as long asn′ + γ remains constant.
One can show that the values of the quantum numbersj, l, m for each energy state are the
same in both spectra, as one would expect given that they are physically verified. The only
difference between the two equations is in the wavefunctions, which include polynomials
of the form ργ

∑n′
n=0 anρ

n. It is not surprising to expect the wavefunctions to deviate
somewhat as the Hamiltonian is different. To obtain the wavefunctions, consider (42). A
confluent hypergeometric functionF(a, b; x) is defined as

F(a, b; x) = 1 + ax

b
+ a(a + 1)x2

b(b + 1)2!
+ · · · . (45)

The coefficientfq of xq is related to the coefficient ofxq+1 by

fq+1 = (a + q)

(b + q)(q + 1)
fq. (46)

Equation (42) is easily rewritten as

cn+1 = (−((ZEα2/|3|) − γ ) + n)

(2γ + 1 + n)(n)
cn = (−n′ + n)

(2γ + 1 + n)(n)
cn. (47)
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This is not quite in the form (46) due to(n) and not(n + 1) appearing in the denominator.
However if a factor ofρ is taken from the power series

∑∞
n=0 cnρ

n then one indeed obtains
a confluent hypergeometric function. The origin of this is that althougha0 6= 0 andb0 6= 0,
it is easily shown thatc0 = 0. Hencec1ρ is the first non-zero term in the power series
y + z and becomes the first term in the corresponding confluent hypergeometric function.
It can also be shown that forn 6 n′, cn 6= 0, (n > 1), so that there is indeed a non-trivial
power series.n′ must be at least 1: if it were zero then it can be shown thatan = 0 = bn

and thus there is only the trivial solution.
Taking out a factor ofρ gives

cn = (−n′ + n)

(2γ + 1 + n)(n)
cn−1 (48)

which leads to

(y(ρ) + z(ρ)) = Cργ+1F(1 − n′, 2γ + 2; ρ) (49)

where C is a (normalization) constant. Now consider (39). Thenth term of the power
series

E(y(ρ) + z(ρ)) − 1

α2
(y(ρ) − z(ρ))

equals the(n + 1)th term of the power series−2|3|Z(y(ρ) + z(ρ)) and since the first term
of the power series(y(ρ) + z(ρ)) is zero and hence has been removed, then

E(y(ρ) + z(ρ)) − 1

α2
(y(ρ) − z(ρ)) = −2|3|ZCργ F (1 − n′, 2γ + 2; ρ). (50)

From equations (49) and (50)y(ρ) andz(ρ) are obtained{
y(ρ)

z(ρ)

}
= C

2
ργ F (1 − n′, 2γ + 2; ρ)

{
(1 ± ε)ρ ± 2(Zα)

√
1 − ε2

}
(51)

with ε = Eα2. In (51) the coefficients of the lowest power ofρ in the polynomials are of
opposite sign fory andz. This explains why the resulta0 + b0 = c0 = 0, a0 6= 0, b0 6= 0
was derived earlier. The general form of the wavefunction9ξ = 9jm(r, θ, φ) is

9jm(r, θ, φ) = CC ′|3|e−|3|r (2|3|r)γ r−1F(1 − n′, 2γ + 2; 2|3|r)
×

(
(1 + ε)r + α2Z

(1 − ε)r − α2Z

)
⊗ 2l,l′,j,m(θ, φ) (52)

with C and C ′ normalization constants for the radial and angular integrals respectively.
These will be determined in the following paper [11], as the inner product needs to be
derived before the normalization can be done. There it will be seen that the inner product
involves both9ξ and 9η̇, showing that the full eight-component equation is necessary in
the analysis of the solutions. IfHη̇ is used for the hydrogen atom instead ofHξ , then the
same energy spectrum is obtained. The radial wavefunctions are also the same and the
angular functions differ only in that the overall sign ofκ (equation (21)) changes. This is
what is expected given thatHη̇ is obtained fromHξ by spatial inversion. The wavefunctions
derived here are compared with the Dirac wavefunctions (page 69 of [12]) in [11]. There are
differences in the radial wavefunctions, in particular the confluent hypergeometric functions.
It will be interesting to see if any physical predictions deviate as a result of this.

To obtain the spin-0 results, all that is necessary is to replaceγ from equation (35) by
(36), and the radial functions will be analogous to (51). The angular functions are obtained
by replacing2l,l′,j,m(θ, φ) by Ylm(θ, φ). Finally the energy spectrum is the same as (44)
with γ from equation (36).
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5. Concluding remarks

The eight-component equation, which is the spin-1
2 analogue to the two-component spin-0

equation, has been constructed. The derivation is via a generalization of the Klein–Gordon
equation to include spin. It has been shown that the equation gives the same bound-
state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation, although the
wavefunctions are slightly different, corresponding to a different Hamiltonian.
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